Structure-Property Relations in Transuranic Compounds

John Sarrao, LANL

Objective: Advance the fundamental understanding of structure and bonding in transuranic intermetallics and molecular systems

An important problem: Strong tunability in actinides influences properties

- Localized-itinerant transition in 5f electrons drives behavior
- Manifestations in spin, charge, and lattice degrees of freedom
- Technological consequences

A renaissance -- in high-visibility results

Reaction of plutonium dioxide with water: Formation and properties of PuO_{2+x} SCIENCE 287 (2000) 285-287

Correlated electrons in delta-plutonium within a dynamical mean-field picture NATURE 410 (2001) 793-795

Plutonium-based superconductivity with a transition temperature above 18 K NATURE 420 (2002) 297-299

Calculated phonon spectra of plutonium at high temperatures SCIENCE 300 (2003) 953-955

First-principles calculations of $PuO_{2+/-x}$ SCIENCE 301 (2003) 498-501

Phonon dispersions of fcc delta-plutonium-gallium by inelastic X-ray scattering SCIENCE 301 (2003) 1078-1080

Failure of Russell-Saunders coupling in the 5f states of plutonium PHYSICAL REVIEW LETTERS 90 (2003) 196404

Photoemission and the electronic structure of PuCoGa₅ PHYSICAL REVIEW LETTERS 91 (2003) 176401

A renaissance -- in outreach, coordination

MRS Symposium DD: Actinides—Basic Science, Applications, and Technology

(Fall, 2003: Tobin (LLNL), Joyce (LANL), Soderholm (ANL) et al.)

(Fall, 2005: Schwarz (LLNL), Sarrao (LANL))

Actinide Science for the 21st Century:

A U.S. Department of Energy Chemical Sciences Council and National Science Foundation Workshop

(May, 2004; Shuh (LBNL), Clark (LANL))

Why a distributed center?

Specialized facilities demand it, but also:

bridging disciplines (chemistry – physics)

need for re-vitalization of community

opportunity for critical perspectives

International precedent:

The Actinide Association

Institute for Transuranic Elements, Karlsruhe

JAERI, Tokai

CEA, Grenoble

Why Us?

• Who we are

• Where we're going

• What we learned at our workshop

• How we'll spend your money

Core Team – Lab principals

John Sarrao (LANL, synthesis and characterization)
Corwin Booth (LBNL, spectroscopy)
Pat Allen (LLNL, spectroscopy)
Lynne Soderholm (ANL, synthesis and characterization)
& many others from LANL, LBNL, LLNL, ANL

Centers of activity

Illinois: ANL, APS

New Mexico: LANL

California: LBNL/SSRL/LLNL

Core Team – University Partners

Thomas Albrecht-Schmitt (Auburn; bulk synthesis)
Dick Andersen (UC Berkeley; molecular synthesis)
Peter Burns (Notre Dame; crystallography)
Daniel Cox (UC Davis; theory)
Zachary Fisk (UC Davis; NAS; bulk synthesis)
James Ibers (Northwestern; NAS; bulk synthesis)

- Demonstrated technical leadership
 in synthesis, characterization and spectroscopy
- Access to facilities
- Community building
 Geographical affinities AND technical affinities

Integrating Themes

Design, discovery, and development of new material systems that are poised on the brink between localized and itinerant behavior

"Structure – Property Relationships" Understanding and Exploiting

Synergies among
Synthesis – Characterization – Spectroscopy

Plutonium Superconductivity: PuCoGa₅

Superconductor PuCoGas

(at least in principle)

Structure-Property Relationships in Neptunium Selenites

Hydrothermal Synthesis and Single Crystal Growth

$$NpO_2 + SeO_2 \xrightarrow{180 \text{ °C}} \text{Np(NpO}_2)_2 (SeO_3)_3$$

Hydrothermal conditions provide a facile and high-yield route to a variety of Np selenites.

Crystal structure demonstrates that the compound contains both Np(IV) and Np(V) in different coordination environments.

Cation-cation interactions exist in the structure creating a 2D substructure

Magnetic susceptibility data follow Curie-Weiss behavior with a μ_{eff} = 2.28 μ_{B} .

Future work will address Np selenites and iodates that may undergo magnetic ordering at low-temperatures. We will make use of single crystal magnetic susceptibility measurements, neutron diffraction, and X-ray absorption spectroscopy to better understand the electronic coupling.

Adducts of (Me₅C₅)₂Yb Related to 2,2'Bipyridine

Cp*₂ Yb (bipy) Cp*₂ Yb (p-methyl-dad)

Actinides in bacteria – implications for remediation

- possibility exists for certain bacteria to express phosphate
- These phosphates may complex with UO₂²⁺ under aerobic conditions.
- "Converting" UO₂²⁺ into a phosphate is beneficial because U-phosphates are less soluble than uranyl.
- A procedure exists to remove such actinides from a solution...

Np(V) Interaction with Cementitious Materials

XANES and EXAFS indicate reduction $Np(V) \longrightarrow Np(IV)$

Phase specific vibrational data from EXAFS

mixed phase "martensite"

Ga in α -Pu Bonds is also separable!

 α '-Pu and δ -Pu Pu—Pu Displacements Fitted to "Debye" Model

Similar opportunities with valence spectroscopies

What we've learned

(including your feedback from December)

Localization and itinerancy (Bonds vs Bands) a central issue for science AND applications

Environmental tuning

Coordinated teaming essential (jargon/vocabulary a barrier)

Better engagement of BES-Chem Sciences community
Utility of advanced spectroscopies (e.g., NMR)

Science Focus

Bringing localization to bulk systems and itinerancy to molecules

Correlated solids

Neptunium intermetallics at ANL

Plutonium flux growth at LBNL w/ Fisk

Correlated molecules

Extend Yb monomers to multimers and actinides

Coupled chemical synthesis and physical measurements

Valence spectroscopy

XANES and EXAFS, e.g., PuCoGa₅ at SSRL this week

Management Plan

Essential collaboration/communication among core team

~ Quarterly Principals Meetings

Post-docs and students as "glue"

between Labs

between Labs and Universities

-unique facilities are an asset here

Extended on-site workshops/ "schools"

Specific, annual themes 'kicked off' – e.g., actinide oxides

Broader impacts and opportunities

Same underlying physics as in many correlated electron systems (e.g., transition metal oxides)

A starting point for BES crystal growth centers

Building the next generation of actinide scientists

Strong coupling to Seaborg Institutes

Actinides in the environment

Partnering with Notre Dame EMSI (NSF); DOE-BER